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Divergent and convergent non-isochoric deformation
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Abstract

Plane strain flow with zero elongation parallel to, but widening, or shortening perpendicular to the flow plane results in either divergent or
convergent non-isochoric deformation. During this special type of flow the kinematic dilatancy number, a measure of the rate at which a surface
changes area with time, is directly dependent on the kinematic vorticity number, a measure of the rotational quality of a flow type, and vice
versa. Thus, the velocity gradients’ tensor can be simplified being only defined by the vorticity and the instantaneous area change. If these num-
bers can be deduced from natural deformed rocks with the help of quantitative kinematic indicators, the finite deformation can be calculated if
the volume change is known from independent criteria. We quantitatively examine a marble mylonite from the Tauern Window, which deformed
by stress-induced solution mass transfer that exhibits convergent non-isochoric deformation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The geometry of structures in deformed rocks is a function
of the perturbation flow field imposed on the material during
deformation (Passchier et al., 2005). One of the primary
aims of structural geology is to use structures from naturally
deformed rocks in order to reconstruct the flow. Theoretical
studies of deformed rocks frequently assume plane strain
and homogeneous deformation composed of combinations of
pure and simple shear. Quantitative kinematic studies of natu-
rally sheared rocks have shown that shear zones, frequently
record a layer-normal thinning and layer-parallel stretching
component (e.g. Lister and Williams, 1983; Platt and Behrmann,
1986; Passchier, 1987, 1988; Vissers, 1989; Wallis, 1992, 1995;
Druguet et al., 1997; Simpson and De Paor, 1997; Grasemann
et al., 1999; Holcombe and Little, 2001; Law et al., 2004; Carosi
et al., 2006) and have therefore been deformed by general shear.
All of these studies rely on conservation of volume during pro-
gressive deformation. However, naturally deformed rocks often
record microstructures such as stylolites, pressure solution
seams, crenulation cleavage or preferential dissolution around
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rigid clasts, all of which result from mass transfer processes
and associated volume change during deformation. Several
studies suggest possible volume change during deformation
(e.g. Schwerdtner, 1982; Wright and Platt, 1982; Ring, 1998;
Ring et al., 2001; Sturm, 2003) but kinematic studies typically
focus on area change with an isotropic change in all line lengths
(e.g. Passchier, 1988, 1991). However, mass transfer processes,
which are probably associated with non-isochoric deformation,
can strongly modify the eigenvectors of flow (Grasemann et al.,
2006). This study focuses on plane strain flow associated with
non-isochoric deformation where there is zero elongation paral-
lel to the flow plane. Such a deformation is here defined as diver-
gent or convergent non-isochoric deformation (Marrett and
Peacock, 1999). We firstly derive the velocity and deformation
gradients tensors discussing some fundamental properties and
possible geological scenarios. Secondly, we quantitatively
investigate a natural example from a marble shear zone, which
experienced post-mylonitic convergent non-isochoric deforma-
tion by stress-induced solution mass transfer processes.

2. Kinematic model

We investigate the kinematic consequences of plane strain,
non-isochoric, homogeneous deformation with zero elongation
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parallel to the shearing plane. We consider the special case,
where the area change due to shortening or widening perpen-
dicular to the shear zone boundary is not balanced by elonga-
tion parallel to the flow plane. Because the model is restricted
to two-dimensions, we investigate the effects of non-isochoric
deformation in sections parallel to the flow direction. In partic-
ular, we investigate flow types that record zero elongation
parallel to the flow plane. This flow geometry occurs for exam-
ple in shear zones where the dominant deformation mecha-
nism is solution mass transfer and where a pronounced
shortening normal to the shear zone is balanced by mass-
loss volume strains (Ring et al., 2001) or during processes
of compaction (Ramsay and Huber, 1983, 1987).

Fig. 1. Mohr circle for the velocity gradients tensor L for convergent non-iso-

choric flow. ISA1, 2 e instantaneous stretching axes; a1, 2 e eigenvectors; W e

vorticity; A e instantaneous area change; S e differential stretching rate. Note

the Pythagorean relationship between W and A.
Non-isochoric flow has been investigated by means of the
velocity gradients tensor L (Passchier, 1988, 1991). The Euler-
ian rate of displacement is defined by:

_Xij ¼ LijXj ð1Þ

where L is the velocity gradients tensor and X the spatial
position of a particle. The column vectors of L can be used
to construct a Mohr circle (De Paor and Means, 1984) by
plotting stretching rate _3 against the angular velocities u of
material lines (Fig. 1). The coordinates of the centre of the
Mohr circle represent half of the instantaneous area change
A (equivalent to a in Passchier, 1988) and half of the vorticity
W (Passchier, 1991). In isochoric flow types, A¼ 0 and there-
fore the Mohr circle is centred on the ordinate. The intersec-
tion of the Mohr circle with the _3-axis represent eigenvectors
of L (a1 and a2), which are lines of no instantaneous angular
velocities (Bobyarchick, 1986). The cosine of the angle a

between the eigenvectors gives the kinematic vorticity number
Wk (Truesdell, 1954):

cos a¼Wk ¼
W

S
ð2Þ

where S is the differential stretching rate or the diameter of the
Mohr circle. This term is twice the mean instantaneous stretch-
ing rate of Passchier (1988) or the deviatoric strain rate inten-
sity used by Lister and Williams (1983). As a consequence,
a shift of the centre of the Mohr circle along the ordinate
(u-axis in Mohr space) reflects a change of W and therefore
a change of Wk (Fig. 2a). By analogy with Wk, the kinematic
dilatancy number Ak (Passchier, 1988, 1991) is defined as the
cosine of b, which is half the angle subtended at the centre of
the Mohr circle by the points of intersection with the ordinate
(Fig. 1):

cos b¼ Ak ¼
A

S
ð3Þ
a b c

Fig. 2. Mohr circles for the velocity gradients tensor L for: (a) isochoric flow; (b) flow with area change; (c) convergent/divergent non-isochoric flow with no

elongation parallel to the flow plane. Subject of this study is flow type c.
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Non-isoplanar flow (Passchier, 1988), which implies an
area change as a result of an isotropic change in all line
lengths, results in a translation of the centre of the Mohr circle
of the velocity gradients tensor parallel to the abscissa but W/2
and S and therefore also Wk are unaffected (Fig. 2b). L can be
defined in terms of Wk, S and Ak (modified after Passchier,
1988):

Lij ¼

0
B@

S

2

�
Ak þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

k

q �
SWk

0
S

2

�
Ak�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

k

q �
1
CA ð4Þ

The deformation considered in this work is the result of
non-isochoric flow, which is a more general term meaning
any flow that changes area in two-dimensions (or volume in
three-dimensions). A non-isochoric flow could change W, S,
and/or Wk. Here, we furthermore allow zero elongation in
the flow plane and therefore a1 is located at the origin of the
_3eu-coordinate system (Fig. 2c). Non-isochoric flow results
in a clockwise or anticlockwise rotation of the Mohr circle
around a1, respectively. Both Wk and Ak are modified by this
flow type because of the Pythagorean relationship of S, W
and A, Ak is directly dependent on Wk:

Ak ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

k

q
ð5Þ

If the flow is simple shearing (Wk¼�1) and Ak¼ 0, there
is no area change. If a rock volume is deformed with coaxial
deformation (Wk¼ 0), and Ak¼�1 therefore the whole defor-
mation is balanced by non-isochoric deformation. Substituting
Eqs. (2), (3) and (5), Eq. (4) simplifies to:

Lij ¼
�

A W
0 0

�
ð6aÞ

or:

Lij ¼
�

0 W
0 A

�
ð6bÞ

Eq. (6a) describes deformation where the shear zone has
a constant thickness. A non-isochoric flow regime forces elon-
gation parallel to the flow plane. Positive elongation is associ-
ated with A> 0 resulting in an extrusion type flow (Fig. 3a, see
also Grasemann et al., 2006). Negative elongation is associ-
ated with A< 0 (Fig. 3b). Here we focus on Eq. (6b) with con-
stant length of material lines parallel to the flow plane
resulting in either divergent transcurrence (A> 0, Fig. 3c) or
convergent transcurrence (A< 0, Fig. 3d, see also Marrett
and Peacock, 1999). L can be easily converted into the finite
Lagrangian deformation tensor D, given that 0 � Wkjj < 1
(Ghosh and Ramberg, 1976; Provost et al., 2004):

Dij ¼ exp
�
Lij t
�

ð7Þ

Therefore L from Eq. (6b) representing non-isochoric defor-
mation with zero elongation parallel to the flow plane is given
over a time increment (t) of 1:
Dij ¼

0
@1

WðeA� 1Þ
A

0 eA

1
A ð8Þ

3. Divergent and convergent non-isochoric deformation

Wk is uniquely specified by the angle between the lines of
no instantaneous rotation (Simpson and De Paor, 1997), which
are symmetrically oriented to other important kinematic direc-
tions (e.g. instantaneous stretching axes, lines of maximum
and minimum instantaneous rotations and shear strain rates),
which control the formation of structures in rocks (e.g.

L =
A

0 0

W

L =
0

0 A

W

L =
–A

0 0

W

L =
0

0 –A

W

a

b

d

c

Fig. 3. Mohr circle for the velocity gradients tensor L with corresponding de-

formed unit square in physical space for: (a) constant thickness non-isochoric

deformation with positive elongation parallel to the flow plane; (b) constant

thickness non-isochoric deformation with negative elongation parallel to the

flow plane; (c) divergent non-isochoric deformation with no elongation paral-

lel to the flow plane; (d) convergent non-isochoric deformation with no elon-

gation parallel to the flow plane. Subject of this study are flow types c and d.
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extension gashes, dissolution seams, co-/counter shearing, co-/
counter rotation, and stable/unstable orientations of markers).

Convergent and divergent non-isochoric flow significantly
changes Wk as a function of Ak and therefore it is interesting
to investigate D of this flow type in more detail (Grasemann
et al., 2006). The special case of zero elongation parallel to
the flow plane a1 has two important consequences: (i) a1 is lo-
cated in the origin of the coordinate system in the Mohr space.
(ii) According to Eq. (5) Wk, is directly related with Ak and is
decreasing with increasing Ak. In the following we investigate
the effects of interdependent change of Wk and Ak on the effec-
tive shear strain G (Fossen and Tikoff, 1993; Tikoff and Fos-
sen, 1993) and the area change DA given in percent volume
change for different finite bulk deformations. Note that, al-
though we focus on the discussion of natural examples with
volume loss, the equations are equally valid for non-isochoric
deformation with area increase and zero elongation parallel to
the flow plane.

Substituting Eq. (5) in Eq. (8), G (i.e. D12) can be plotted as
a function of Wk for different S (Fig. 4a). Positive and negative
sign control area increase (dotted lines in Fig. 4) and decrease
(solid lines in Fig. 4), respectively:

G¼
�Wk

�
e�S

ffiffiffiffiffiffiffiffiffi
1�W2

k

p
� 1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

k

p ð9Þ

For area loss, G increases/decreases exponentially with
increasing/decreasing Wk reaching its limit and maximum/
minimum in Wk¼�1, where G¼�S (Fig. 4a; dextral shear
is defined as being positive). For area increase, the results
are less intuitive: Again, G¼ 0 at Wk¼ 0 and reaches its limit
in Wk¼�1, where G¼�S. However, with increasing S, the
maximum of G shifts towards lower Wk. Whereas the variation
in G for area loss is only significant at higher strain (S> 2) and
simple shear dominated flows (Wk>�0.8), deformation asso-
ciated with area increase reveal a sensitive change of G with
changing Wk at higher strain. Note that a single value of G

(e.g. 4 in Fig. 4a) could be characteristic for flows with differ-
ent Wk (e.g. Wk w 0.2 and 0.9 in Fig. 4a).
a c

b d

Fig. 4. Plot of different kinematic parameters for convergent/divergent non-isochoric deformation. Sinistral and dextral shear have a negative and positive Wk,

respectively. Solid (green) and dotted (red) curves depict area loss and increase respectively. (a) Plot of kinematic vorticity number Wk versus effective shear strain

G for various differential stretching rates S. Note, if Wk¼�1, G¼�S. (b) Plot of kinematic vorticity number Wk versus percent area change DA for various

differential stretching rates S. (c) Plot of kinematic dilatancy number Ak versus effective shear strain G for various differential stretching rates S. (d) Plot of

kinematic dilatancy number Ak versus percent area change DA for various differential stretching rates S. Note that for area loss the curves have a limit in

�100% DA.
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Because Wk is directly related to Ak (Eq. (5)), DA (i.e. D22)
can be plotted in percent area change as a function of Wk for
different S (Fig. 4b). Again, the positive and negative sign con-
trols area increase and decrease, respectively:

DA¼ e�S
ffiffiffiffiffiffiffiffiffi
1�W2

k

p
ð10Þ

Generally, the variation of DA is much more sensitive to
a change in Wk at simple shear dominated flows, where
DA¼ 0 when Wk approaches �1. Therefore, an estimate of
the area change might be a good proxy for estimating S in
pure shear dominated flows. If area is lost during deformation,
then DA equals the exponent of �S and is a minimum at
Wk¼ 0 having its limit at �100%. Deformation with area
increase has no upper limits in DA mathematically, which
has its maximum at Wk¼ 0 equalling the exponent of S. How-
ever, a physical limit will exist during natural deformation
because an area increase during plane straining requires a de-
creasing rock density.

Rearranging Eq. (5), G and DA can be also plotted as a func-
tion of Ak (Fig. 4c and d). This rearrangement does not reveal
any new relationships because of the direct dependence of Ak

and Wk. Nevertheless, the plots show some interesting proper-
ties on non-isochoric deformation with zero elongation paral-
lel to the flow plane. The effective shear strain can be
expressed as a function of Ak and S (Fig. 4c):

G¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�A2

k

p
ðeAkS � 1Þ

Ak

ð11Þ

Similarly to Fig. 4a, Ak approaches zero if G equals �S and
deformations with area loss reveal a dramatic lower degree
dependence of G on Ak. The function has its limit in zero
when Ak approaches �1. Because Wk changes along a curve
a

b

Fig. 5. Photomicrographs (left column) and line drawings (right column) of impure marble ultra-mylonites from the western Tauern Window that were used for the

reconstruction of flow parameters (UTM 32 coordinates: Easting: 698 927 m Northing: 5 214 718 m, view to S ). Slickolites suggest deformation by solution mass

transfer. The long axes of the slickolite teeth make an angle of (a) 63� and (b) 57� with the solution surface, which is sub-parallel to the mylonitic foliation. For

further explanation, see text.
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for a given S, the maximum/minimum of G is dependent on S
when located at higher Ak values with increasing strain (e.g.
Ak> 0.8 for S> 3).

Fig. 4d is a plot exploring the dependence of DA on Ak,
highlighting the trivial fact that the limits in area decrease
are set limited by the point of complete loss of the material,
whereas area increase has theoretically no limit:

DA¼ eAkS ð12Þ

By definition, all curves for different S cross the origin of the
plot where DA and Ak is zero. If Ak approaches �1, DA equals
the exponent of �S.

4. Discussion

In the following section, we quantitatively examine a natu-
ral example with non-isochoric deformation with convergent
transcurrence (A< 0). After a description of the geological
setting, deformation parameters are deduced from our natural
example involving pressure solution. The significance of this
analysis is that the approach is applicable to other cases of
convergent or divergent non-isochoric deformation in natural
situations, such as soft-sediment deformation, shear zone
development or deformation band formation.

4.1. Pressure solution

Pressure solution and stress-induced solution diffusive
mass transfer may produce dark seams of insoluble material
along dissolution surfaces that may have planar, wavy or
sutured appearance (Engelder and Marshak, 1985). Discrete
solution surfaces originate at sites of stress concentration
and propagate through rock as anticracks (Fletcher and

Fig. 6. Photomicrograph of apparent offset of small veins along stylolites dem-

onstrating that pressure solution is not balanced by precipitation in form of fi-

brous veins (UTM 32 coordinates: Easting: 698 927 m Northing: 5 214 718 m,

view to S ).
Pollard, 1981). Dissolution surfaces with narrow teeth normal
or oblique to the surface are called stylolites and slickolites,
respectively. The teeth are considered to be parallel to the
direction of maximum compressive stress (Stockdale,
1922). Material is dissolved from sites of greater normal
compressive stress and precipitated at sites of lesser stress al-
though strain may also conceivably contribute to solution
(Durney, 1972). If solution of material is not balanced by
precipitation, the rocks experience volume loss. If heteroge-
neous deformation along narrow regularly spaced solution
surfaces is present within an otherwise homogeneous greater
area, the deformation can be integrated and approximated as
homogeneous flow (Wojtal, 1989) and Eq. (6b) with A< 0
may be used to quantify the flow kinematics. Furthermore,
if the rotational components of the finite deformation are
small the orientation of the stress ellipsoid can be determined
by measuring the orientation of the slickolites or the orienta-
tions of dissolution surfaces (Engelder and Marshak, 1985).
If Wk can be derived from the orientation of the ISA with
respect to the flow plane (i.e. an approximation of the fabric
attractor) and if the percent DA can be estimated from dis-
solved markers (Ramsay and Huber, 1983), Ak (Eq. (5))
and S (Eq. (10)) can be calculated.

4.2. Natural example

To demonstrate an application of the convergent non-iso-
choric deformation tensor in nature we quantitatively describe
ultra-mylonitic marble horizons from lower greenschist facies
shear zones from the western Tauern Window (Tyrol/Austria).
The examined shear zones crop out in the Zillertal Alps in the
eastern Vals valley some 1.5 km North of the Geraer hut
(UTM 32 coordinates: Easting: 698 927 m Northing:
5 214 718 m). These shear zones that are assumed to show
plane strain deformation, define the boundary between the
Zentralgneis (crystalline basement) and the overlying parau-
tochthonous Lower Schieferhülle (Frisch, 1975) and record
a W directed normal movement kinematically related to the
NeS striking, W-dipping Brenner Normal Fault (Behrmann,
1988; Selverstone, 1988; Ebner, 2004). The ultramylonite
marbles belong to a set of normal faults that are localized in
the Hochstegen marble, located at the basal unit of the Lower
Schieferhülle (Höck, 1969; Frisch, 1975). The shear zones
have thicknesses of 5e30 cm and consist of impure marble
ultra-mylonites containing white mica, quartz, and opaque
phases (mainly Fe-oxides and sulfides). The host-rocks of
these shear zones are made up of coarse-grained polygonal
equigranular recrystallized marbles (crystal size ranges from
1 to 5 mm) that show no evidence of greenschist facies
deformation.

Here, we focus on the latest deformation increment of the
mylonites; a deformation that is accommodated by pressure
solution localized along concentrated foliation-parallel sur-
faces these solution seams are confined to the interiors of
the shear zone and cannot be found in the host rock. The
pressure solution surfaces are highly indented consisting of
interlocking teeth of wall rock. The teeth of these slickolites
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Fig. 7. Mohr circles of the velocity gradient tensor L (left column) as derived from the examined shear zones. The matching finite deformation tensors D and the

finite deformation of a unit square (right column) were calculated using Eq. (8) under the precautious assumption of a correct amount of average volume loss

DA¼ 23% and the corresponding differential stretching rate S. (a) corresponds to Fig. 5a (Wk¼ 0.81; Ak¼�0.59) (b) corresponds to Fig. 5b (Wk¼ 0.89;

Ak¼�0.45). See text for further description.
(Hancock, 1985) are inclined at about 60� � 5� (compare
Fig. 5a and b) and are interpreted to have formed by dissolu-
tion along the pre-existing mylonitic foliation, the pressure
solution seams record both shear displacement and shortening.
Although the slickolites are discrete surfaces, they form pene-
trative 2e4 mm spaced cleavage domains throughout the shear
zones and therefore we are confident that the deformation over
the whole thickness of the shear zone can be regarded as
homogeneous. Microstructural investigations reveal that the
volume loss associated with the slickolites solution transfer
cannot be balanced by precipitation volume gain associated
with surrounding veins (Fig. 6) and therefore the shear zone
in this stage of deformation experienced volume loss (Ebner,
2004). We conclude that, based on the microstructural
investigations, the solution mass transfer accumulated defor-
mation can be adequately described by convergent non-iso-
choric deformation.

Several quantitative kinematic studies have been proposed
to establish the ratio of pure to simple shear (i.e. Wk), many
of which are still in the phase of development (for a review
see Ramsay and Lisle, 2000 and Passchier and Trouw,
2005). Here, we use the orientations of the teeth of the slick-
olites, measured in thin sections cut parallel to the shearing
plane (Fig. 5). We assume that the mylonitic foliation, which
has been used for pressure solution, is parallel to the fabric
attractor, i.e. to the non-stretching eigenvector a1 of conver-
gent non-isochoric deformation. Furthermore, we assume
that the long axes of the teeth of the slickolites point in the
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direction of the shortening ISA (e.g. Gratier et al., 2005). With
this angular relationship, the orientation of the second, short-
ening eigenvector a2 can be reconstructed (Fig. 5). The arcus
cosine of the angle a between the eigenvectors gives the Wk.
The average angle of a¼ 30� � 5� suggests that the deforma-
tion is simple shear dominated with Wk¼ 0.87� 0.05 and
using Eq. (5), Ak¼�0.5� 0.07.

To characterise the finite deformation (i.e. finite deforma-
tion tensor D) of our natural example the numerical values
of W, A and S need to be known. To convert Wk and Ak into
W and A (Eqs. (2) and (3)), we used the amount of average
area loss DA (Eq. (12)) as a second independent variable to
obtain the differential stretching rate S. To estimate the amount
of finite volume loss for the entire shear zone, we used the
geometry of small markers, which show an apparent offset
along the stylolites similar to that shown in Fig. 6. This calcu-
lation gives a rough estimate of area loss within the shear zone
(assuming that pressure solution only occurred along the
microscopically visible sites, i.e. stylolites), about 20e25%
(Ebner, 2004). With the amount of volume loss, the differen-
tial stretching rate S can be calculated by rearranging Eq.
(10) or Eq. (12) or by alternately plotting the values of Ak

and DA in Fig. 4d. Finally, the corresponding finite deforma-
tion tensor D can be calculated substituting A and W in Eq.
(8). D is presented for the examined shear zones in the form
of a deformed unit square in Fig. 7.

The quantification of this natural example shows that the
offset across the shear zone is mainly controlled by the shear-
ing component, whereas the thinning component is a result of
area (volume) loss, which is not balanced by a shear zone par-
allel stretching component.

5. Conclusions

The velocity gradients tensor L for convergent or divergent
non-isochoric flow (with no elongation parallel to the flow
plane) is a simple but useful tool in order to explore the param-
eters that influence the kinematic consequences of non-iso-
choric deformation. In two-dimensions, L can be fully
described by two parameters: the differential stretching rate
S, and either the kinematic vorticity Wk or the kinematic dilat-
ancy Ak, which are directly dependent. Using quantitative
kinematic techniques for estimating the ratio of pure and sim-
ple shear (i.e. Wk), a direct measure of Ak can be established in
those cases where the flow can be described by convergent or
divergent non-isochoric deformation. The kinematic directions
of this special type of flow have the following characteristics.
(i) An instantaneously non-rotating, non-stretching orientation
(i.e. the eigenvector a1 or fabric attractor) parallel to the flow
plane (this is similar to simple shear). (ii) A second instanta-
neously non-rotating, shortening/stretching orientation (i.e.
eigenvector a2) that is inclined into/against the shearing direc-
tion for convergent/divergent non-isochoric deformation. (iii)
An increase in non-isochoric flow component is always asso-
ciated with an increase in the coaxial component of
deformation.
If the kinematic vorticity and dilatancy number in natural
examples with convergent or divergent non-isochoric deforma-
tion can be derived by quantitative kinematic indicators, the
full deformation gradient tensor D can be calculated by inde-
pendent estimates of volume loss.
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